net

VIP
数据结构

深入浅出Netty 中文_数据结构教程

资源名称:深入浅出Netty 中文 本文档主要讲述的是深入浅出Netty;最近几年,Netty 社区的发展如火如荼,无论是大数据领域,还是微服务架构,底层都需要一个高效的分布式通信框架作为基础组件。Netty 凭借优异的性能、灵活的可扩展新得到了广泛的应用。短短几年间,Netty 已经成为众多 Java 高性能异步通信框架的首选。作为Java语言领域最流行、表现最优异的NIO框架,Netty深受大家喜爱,但是长期以来除了 UserGuide 之外,国内鲜有 Netty 相关的系统性文章供广大 NIO 编程爱好者学习和参考。由于 Netty 源码的复杂性和 NIO 编程本身的技术门槛限制,对于大多数初学者而言,通过自己阅读和分析源码来深入掌握 Netty 的设计原理和实现细节是件非常困难的事情。 资源截图:
VIP
数据结构

ACM国际大学生程序设计竞赛 题目与解读 完整pdf_数据结构教程

资源名称:ACM国际大学生程序设计竞赛 题目与解读 完整pdf 第一部分 例题精讲第1章 数学1.1 概率CouponsGenerator1.2 代数1.2.1 PolyaArif in Dhaka(First Love Part 2)1.2.2 矩阵TowerXX Language1.2.3 线性方程组Ars Longa1.2.4 线性规划Expensive Drink1.3 组合1.3.1 基本排列组合The Unreal Tournament1.3.2 容斥原理JackpotThe Almost Lucky Numbers1.3.3 生成函数Vasya's Dad1.3.4 生成树计数Organising the Organisation1.3.5 综合Hero of Our TimePermutation1.4 博弈Battle for the...
VIP
嵌入式

Windows CE(C#)嵌入式应用开发 PDF_网络营销教程

资源名称:Windows CE(C#)嵌入式应用开发 PDF 第1章 Windows CE嵌入式系统 11.1 Windows CE概述 11.1.1 什么是Windows CE 11.1.2 Windows CE平台主要开发特征 11.1.3 Windows CE 应用领域 21.1.4 Windows CE体系结构的特性 41.2 基于Windows CE系统开发 61.2.1 Windows CE开发内容 61.2.2 Windows CE开发流程 81.3 Windows CE开发工具 81.3.1 Platform Builder for Windows CE...
VIP
人工智能

2016年最新从神经网络到深度学习原理精讲班 12课_人工智能教程

教程名称:2016年最新从神经网络到深度学习原理精讲班 12课 教程目录: 【IT教程网】第01课 跌宕起伏70年:神经网络发展概述【IT教程网】第02课 线性神经网络【IT教程网】第03课 BP神经网络应用【IT教程网】第04课 能联想和记忆的Hopfield神经网络【IT教程网】第05课 模拟退火算法与Boltzmann机【IT教程网】第06课 ?受限Boltzmann机RBM与应用RBM进行协同过滤?【IT教程网】第07课 深度置信网络:利用堆叠的RBM进行权值预训练,应用于图像编码与解码,图像识别【IT教程网】第08课 万能逼近器:径向基神经网络 PCA与SVM神经网络【IT教程网】第09课 卷积神经网络;经典应用:MNIST手写体数字识别,Imagenet图像识别【IT教程网】第10课 计算机博弈原理,蒙特卡洛树搜索,深度学习与AlphaGo,价值网络与策略网络的设计,构成和训练【IT教程网】第11课 堆叠150层的超深度网络:深度残差网络【IT教程网】第12课 递归神经网络  
VIP
人工智能

21个项目玩转深度学习:基于Tensorflow的实践详解_人工智能教程

资源名称:21个项目玩转深度学习:基于Tensorflow的实践详解 内容简介: 《21 个项目玩转深度学习——基于TensorFlow 的实践详解》以实践为导向,深入介绍了深度学习技术和TensorFlow 框架编程内容。 通过本书,读者可以训练自己的图像识别模型、进行目标检测和人脸识别、完成一个风格迁移应用,还可以使用神经网络生成图像和文本,进行时间序列预测、搭建机器翻译引擎,训练机器玩游戏。全书共包含21 个项目,分为深度卷积网络、RNN网络、深度强化学习三部分。读者可以在自己动手实践的过程中找到学习的乐趣,了解算法和编程框架的细节,让学习深度学习算法和TensorFlow 的过程变得轻松和高效。本书代码基于TensorFlow 1.4 及以上版本,并介绍了TensorFlow 中的一些新特性。 本书适合有一定机器学习基础的学生、研究者或从业者阅读,尤其是希望深入研究TensorFlow 和深度学习算法的数据工程师,也适合对人工智能、深度学习感兴趣的在校学生,以及希望进入大数据应用的研究者。 资源目录: 第1章 MNIST机器学习入门 1 1.1 MNIST数据集 2 1.1.1 简介 2 1.1.2 实验:将MNIST数据集保存为图片 5 1.1.3 图像标签的独热(one-hot)表示 6 1.2 利用TensorFlow识别MNIST 8 1.2.1 Softmax回归 8 1.2.2 两层卷积网络分类 14 1.3...
VIP
人工智能

tensorflow实战_人工智能教程

资源名称:tensorflow实战 内容简介: Google近日发布了TensorFlow 1.0候选版,这个稳定版将是深度学习框架发展中的里程碑的一步。自TensorFlow于2015年底正式开源,距今已有一年多,这期间TensorFlow不断给人以惊喜,推出了分布式版本,服务框架TensorFlow Serving,可视化工具TensorFlow,上层封装TF.Learn,其他语言(Go、Java、Rust、Haskell)的绑定、Windows的支持、JIT编译器XLA、动态计算图框架Fold,以及数不胜数的经典模型在TensorFlow上的实现(Inception Net、SyntaxNet等)。在这一年多时间,TensorFlow已从初入深度学习框架大战的新星,成为了几近垄断的行业事实标准。 《TensorFlow实战》希望用简单易懂的语言带领大家探索TensorFlow(基于1.0版本API)。在《TensorFlow实战》中我们讲述了TensorFlow的基础原理,TF和其他框架的异同。并用具体的代码完整地实现了各种类型的深度神经网络:AutoEncoder、MLP、CNN(AlexNet,VGGNet,Inception Net,ResNet)、Word2Vec、RNN(LSTM,Bi-RNN)、Deep Reinforcement Learning(Policy Network、Value Network)。此外,《TensorFlow实战》还讲解了TensorBoard、多GPU并行、分布式并行、TF.Learn和其他TF.Contrib组件。《TensorFlow实战》希望能帮读者快速入门TensorFlow和深度学习,在工业界或者研究中快速地将想法落地为可实践的模型。 资源目录: 1 TensorFlow基础 1 1.1 TensorFlow概要 1 1.2 TensorFlow编程模型简介 4 2 TensorFlow和其他深度学习框架的对比 18 2.1 主流深度学习框架对比 18 2.2 各深度学习框架简介 20 3 TensorFlow第一步 39 3.1 TensorFlow的编译及安装 39 3.2 TensorFlow实现SoftmaxRegression识别手写数字 46...
VIP
人工智能

TensorFlow:实战Google深度学习框架 PDF_人工智能教程

资源名称:TensorFlow:实战Google深度学习框架 PDF 内容简介: TensorFlow是谷歌2015年开源的主流深度学习框架,目前已在谷歌、优步(Uber)、京东、小米等科技公司广泛应用。《Tensorflow实战》为使用TensorFlow深度学习框架的入门参考书,旨在帮助读者以最快、最有效的方式上手TensorFlow和深度学习。书中省略了深度学习繁琐的数学模型推导,从实际应用问题出发,通过具体的TensorFlow样例程序介绍如何使用深度学习解决这些问题。《Tensorflow实战》包含了深度学习的入门知识和大量实践经验,是走进这个最新、最火的人工智能领域的首选参考书。 作者简介: 郑泽宇,现为才云科技(Caicloud.io)联合创始人、首席大数据科学家。针对分布式TensorFlow上手难、管理难、监控难、上线难等问题,他带领团队成功开发了国内首个成熟的分布式TensorFlow深度学习平台(TensorFlow as a Service)。基于此平台,才云大数据团队为安防、电商、金融、物流等多个行业提供有针对性的人工智能解决方案。归国创业之前,郑泽宇曾任美国谷歌高级工程师。从2013 年加入谷歌,郑泽宇作为主要技术人员参与并领导了多个大数据项目。由他提出并主导的产品聚类项目用于衔接谷歌购物和谷歌知识图谱(knowledge graph)数据,使得知识卡片形式的广告逐步取代传统的产品列表广告,开启了谷歌购物广告在搜索页面投递的新纪元。郑泽宇于2011年5月获得北京大学计算机学士学位,并荣获北京大学信息科学技术学院十佳优秀毕业论文、北京大学优秀毕业生。2013年5月获得美国 Carnegie Mellon University(CMU)大学计算机硕士学位,并获得西贝尔奖学金 (Siebel Scholarship)。郑泽宇在机器学习、人工智能领域有多年研究经验,并在SIGIR、SIGKDD、ACL、ICDM、ICWSM等顶级国际会议上发表多篇学术论文。 资源目录: 第1章 深度学习简介 1 1.1 人工智能、机器学习与深度学习 2 1.2 深度学习的发展历程 7 1.3 深度学习的应用 10 1.3.1 计算机视觉 10 1.3.2 语音识别 14 1.3.3 自然语言处理 15 1.3.4 人机博弈...
VIP
人工智能

深度学习原理与TensorFlow实践 PDF_人工智能教程

资源名称:深度学习原理与TensorFlow实践 PDF  内容简介: 《深度学习原理与TensorFlow实践》主要介绍了深度学习的基础原理和TensorFlow系统基本使用方法。TensorFlow是目前机器学习、深度学习领域最优秀的计算系统之一,《深度学习原理与TensorFlow实践》结合实例介绍了使用TensorFlow开发机器学习应用的详细方法和步骤。同时,《深度学习原理与TensorFlow实践》着重讲解了用于图像识别的卷积神经网络和用于自然语言处理的循环神经网络的理论知识及其TensorFlow实现方法,并结合实际场景和例子描述了深度学习技术的应用范围与效果。 《深度学习原理与TensorFlow实践》非常适合对机器学习、深度学习感兴趣的读者,或是对深度学习理论有所了解,希望尝试更多工程实践的读者,抑或是对工程产品有较多经验,希望学习深度学习理论的读者。 作者简介: 喻俨,百纳信息(海豚浏览器)研发副总裁。2007年加入微软亚洲工程院,2011年加入百纳信息负责海外业务线,从0到1做过多个项目,现致力于AI和大数据产品的研究与应用。 莫瑜,先后任职于微软和海豚浏览器,从事搜索引擎、音乐检索/哼唱搜索、内容分发推荐算法和对话机器人技术研发。长期以来持续关注和实践大规模数据算法性能优化、搜索引擎、推荐系统和人工智能技术。 王琛,英国爱丁堡大学人工智能专业硕士,现为百纳信息技术有限公司人工智能方向负责人。早年参加过信息学奥林匹克竞赛获得河北省第一名、全国三等奖,并保送进入中山大学。大学期间,在ACM竞赛上也屡获佳绩。硕士毕业后就职于百度基础架构部,参与大数据平台研发工作,对大数据分析处理、分布式系统架构等方面都有比较深刻的理解。2014年加入百纳,负责多个项目的研发,自2016年起负责人工智能方向的探索。 胡振邦,拥有博士学位,百纳信息技术有限公司高级算法研究员,毕业于中国地质大学计算机学院地学信息工程专业。读博期间,参与了关于遥感卫星图像识别分析的863项目,并且是主要的研发人员。毕业以来,一直从事图像识别方面的算法研发工作,主要方向包括目标检测、图文检索、图像分类与验证等,在图像处理、计算机视觉等方面都有深厚的积累和经验。 高杰,是一位1980年出生于苏北的“爱学习、能折腾、有情怀”的大叔。毕业于扬州中学特招班,1998年入学华中科技大学机械系,兼修管理、会计,自学计算机,2003年考入南京大学软件学院,曾任德国西门子内部SAP咨询师,还在中银国际TMT投行、金山软件集团投资部任过职,2015年与合伙人联合创立了图灵科技集团,与华尔街顶尖交易团队一起致力于量化交易、算法模型和人工智能在金融领域的应用,目前这家公司管理着超过20亿元的资产,是细分市场的领先公司。 资源目录: 1 深度学习简介 1 1.1 深度学习介绍 1 1.2 深度学习的趋势 7 1.3 参考资料 10 2 TensorFlow系统介绍 12 2.1 TensorFlow诞生的动机 12 2.2 TensorFlow系统简介 14 2.3 TensorFlow基础概念 16 2.3.1 计算图 16 2.3.2...
VIP
人工智能

TensorFlow技术解析与实战 PDF_人工智能教程

资源名称:TensorFlow技术解析与实战 PDF  内容简介: TensorFlow 是谷歌公司开发的深度学习框架,也是目前深度学习的主流框架之一。本书从深度学习的基础讲起,深入TensorFlow框架原理、模型构建、源代码分析和网络实现等各个方面。全书分为基础篇、实战篇和提高篇三部分。基础篇讲解人工智能的入门知识,深度学习的方法,TensorFlow的基础原理、系统架构、设计理念、编程模型、常用API、批标准化、模型的存储与加载、队列与线程,实现一个自定义操作,并进行TensorFlow源代码解析,介绍卷积神经网络(CNN)和循环神经网络(RNN)的演化发展及其TensorFlow实现、TensorFlow的高级框架等知识;实战篇讲解如何用TensorFlow写一个神经网络程序并介绍TensorFlow实现各种网络(CNN、RNN和自编码网络等)并对MNIST数据集进行训练,讲解TensorFlow在人脸识别、自然语言处理、图像和语音的结合、生成式对抗网络等方面的应用;提高篇讲解TensorFlow的分布式原理、架构、模式、API,还会介绍TensorFlow XLA、TensorFlow Debugger、TensorFlow和Kubernetes结合、TensorFlowOnSpark、TensorFlow移动端应用,以及TensorFlow Serving、TensorFlow Fold和TensorFlow计算加速等其他特性。最后,附录中列出一些可供参考的公开数据集,并结合作者的项目经验介绍项目管理的一些建议。 作者简介: 李嘉璇,创建TensorFlow交流社区,活跃于国内各大技术社区,知乎编程问题回答者。致力于人工智能的研究,对深度学习框架的架构、源码分析及在不同领域的应用有浓厚兴趣。有过上百篇论文阅读和深度学习经验,处理图像、社交文本数据情感分析、数据挖掘经验,参与过基于深度学习的自动驾驶二维感知系统Hackathon竞赛,曾任职百度研发工程师。 资源目录: 第一篇 基础篇 第1章 人工智能概述 2 1.1 什么是人工智能 2 1.2 什么是深度学习 5 1.3 深度学习的入门方法 7 1.4 什么是TensorFlow 11 1.5 为什么要学TensorFlow 12 1.5.1 TensorFlow的特性 14 1.5.2 使用TensorFlow的公司 15 1.5.3 TensorFlow的发展 16 1.6 机器学习的相关赛事 16 1.6.1 ImageNet的ILSVRC 17 1.6.2 Kaggle 18 1.6.3 天池大数据竞赛 19 1.7 国内的人工智能公司...
VIP
人工智能

人工智能的原理与方法_人工智能教程

资源名称:人工智能的原理与方法 内容简介:         本书全面系统地介绍了人工智能的基础理论、基本方法和应用技术。内容涉及人工智能的基本概况和数学基础、知识表示、基于谓词的逻辑推理、不确定性理论、搜索策略、专家系统、神经网络、模式识别、机器学习、自然语言理解、智能决策系统以及智能计算机等。         《人工智能的原理与方法》全面系统地介绍了人工智能的基础理论、基本方法和应用技术,可作为本科生和研究生相关专业的教材,也可供有关科技人员参考。 资源目录: 第l章绪论1.1人工智能的概念1.1.1什么是人工智能?1.1.2为什么要研究人工智能?1.2人工智能的研究目标1.3人工智能的研究内容1.4人工智能的研究途径1.5人工智能的研究领域1.5.1问题求解(ProblemSolving)1.5.2专家系统(ExpertSystem-ES)1.5.3模式识别(PatternRecognition)1.5.4机器学习(MachineLearning)1.5.5自动定理证明(AutomatedMechanicalTheoryProving)1.5.6自然语言理解(NaturalLanguageUnderstanding)1.5.7自动程序设计(AutomaticProgramming)1.5.8智能机器人(IntelligentRobot)1.5.9智能决策系统(IntelligentDecisionSystem)1.5.10人工神经网络(ArtificialNeuralNetwork)1.6人工智能的发展概况习题1第2章人工智能语言2.1概述2.2函数型程序设计语言LISP2.2.1LISP语言的数据结构2.2.2LISP程序结构2.2.3基本函数2.2.4LISP语言中的递归和循环2.2.5LISP语言程序举例2.3逻辑型程序设计语言PROLOG2.3.1PROLOG的三种基本语句2.3.2PROLOG的基本数据结构2.3.3PROLOG的程序设计原理2.3.4PROLOG程序应用举例2.4面向对象程序设计语言Smalltalk2.4.1基本概念和对象2.4.2消息模式和消息表达式2.4.3语句和程序块2.4.4程序流程控制2.4.5类库和类定义习题2第3章人工智能的数学基础3.1命题逻辑与谓词逻辑3.1.1命题3.1.2谓词3.1.3谓词公式3.1.4谓词公式的解释3.1.5谓词公式的等价性与永真蕴涵3.2多值逻辑3.3概率论3.3.1随机现象3.3.2样本空间与随机事件3.3.3事件概率3.3.4条件概率3.3.5全概率公式与Bayes公式3.4模糊理论3.4.1模糊概念3.4.2模糊集合与隶属函数3.4.3模糊集的表示方法3.4.4模糊集的运算3.4.5模糊集的λ水平截集3.4.6分解定理与扩张原理3.4.7模糊关系及其合成3.4.8模糊变换习题3第4章知识与知识表示4.1知识的基本概念4.1.1知识的特征4.1.2知识的分类和表示4.2一阶谓词逻辑表示法4.2.1什么是一阶谓词?4.2.2一阶谓词逻辑表示法的特点4.3产生式表示法4.3.1产生式系统的定义和组成4.3.2产生式系统的分类4.3.3产生式系统的控制策略4.3.4产生式系统的推理过程4.4框架表示法4.4.1框架的概念4.4.2框架的表达能力4.4.3基于框架的推理4.5语义网络表示法4.5.1语义网络的概念4.5.2语义网络的表达能力4.5.3基于语义网络的推理4.5.4语义网络表示法的特点4.6过程表示法4.7脚本表示法4.8面向对象表示法4.8.1面向对象的基本概念4.8.2面向对象表示法的特点4.9Petri网表示法习题4第5章基本谓词的逻辑推理5.1谓词逻辑的演绎推理方法5.2归结原理5.2.1子句5.2.2代换与合5.2.3命题逻辑中的归结原理5.2.4谓词逻辑中的归结原理5.2.5基于归结的问题的求解方法5.2.6归结策略5.3与/或形演绎推理5.3.1与/或形正向演绎推理(FR)5.3.2与/或形逆向演绎推理(BR)5.3.3与/或型双向演绎推理习题5第6章不确定性与不确定推理6.1基本概念6.1.1什么是不确定性推理?6.1.2不确定性推理中的基本问题6.1.3不确定性推理方法的分类6.2概率方法6.2.1经典概率方法6.2.2逆概率方法6.3主观Bayes方法6.3.1知识不确定性的表示6.3.2证据不确定性的表示6.3.3组合证据不确定性的算法6.3.4不确定性的传递算法6.3.5结论不确定性的合成算法6.4可信度方法6.4.1可信度的概念6.4.2C-F模型6.4.3带有阚值限度的不确定性推理6.5模糊推理6.5.1模糊命题6.5.2模糊知识的表示6.5.3模糊匹配与冲突消解6.5.4简单模糊推理的基本模式习题6第7章搜索策略7.1基本概念7.1.1什么是搜索?7.1.2状态图表示法7.1.3与/或图表示法7.2状态图搜索技术7.2.1图搜索的基本概念7.2.2宽度优先搜索7.2.3深度优先搜索7.2.4有限深度优先搜索7.2.5启发式搜索第8章专家系统第9章神经网络第10章模式识别第11章机器学习参考文献 资源截图: